
Tuneable Approximations for the Mean and Variance of the Maximum of 
Heterogeneous Geometrically Distributed Random Variables 

 
Daniel R. Jeske 

Department of Statistics 
University of California 

Riverside, CA 
USA 

daniel.jeske@ucr.edu 

Todd Blessinger 
Food and Drug Administration 

Rockville, MD 
USA 

TBlessin@CVM.FDA.GOV 
 

Abstract 
 
Analysis of the maximum of n independent geometrically distributed random variables arises in a variety of 
applications in computer science and engineering.  Evaluating the mean and variance of the maximum 
when n is large presents considerable computational challenges.   While approximate formulae have been 
proposed in the case where each geometric distribution has the same probability of success, the 
heterogeneous case has not received any attention.  We derive an epsilon-accurate approximation for both 
the mean and the variance in the heterogeneous case.  The approximations also apply to the homogeneous 
case, and offer something new with their ability to tune the approximation to any desired level of accuracy. 
We illustrate the formulae with an application where the heterogeneous context arose quite naturally. 

 

1. Introduction 

1.1 Problem Statement 

 
We consider the problem of evaluating the expected value of the maximum of n independent 
geometrically distributed random variables.  No tractable computational form appears to exist for the case 
of large n and heterogeneous geometric random variables.  Our interest in this case is motivated by the 
following real world engineering problem.  In a wireless broadcast transmission system, a transmitter 
broadcasts packets from a fixed location to mobile users located at varying distance from the transmitter.  
The transmission protocol is to broadcast each packet for as many times as is required in order for each 
mobile user to successfully receive the packet.  Upon successful reception of the packet, users send an 
acknowledgement packet back to the transmitter.  Only after the transmitter has received 
acknowledgement packets from each mobile user will it advance to the task of transmitting the next 
packet in the sequence.   
 
Let iX  denote the number of transmissions required before the i-th user successfully receives the packet 
being transmitted.  Because each user is a different distance from the transmitter, the probability of 
successful reception is typically different for each user, say ip .  Assuming that successive transmission 
attempts are independent, iX  has a geometric distribution with parameter ip .  That is, 
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fraction of non-repetitious transmissions and can be expressed as ( )1/ nµ .  Characterizing system 



throughput as a function of the number of users, n, is a common way to benchmark the performance of a 
system design.   
 
In the heterogeneous case, with 1i iq p= − , we have 

1
( )

1

1 1 1 1( 1)
1 1 1 1

n
n n

i i j i j ki i j i j k i
i

q q q q q q q
µ +

< < <

=

= − + − + −∑ ∑ ∑
− − − −∏

             (1) 

For small n, it is a trivial matter to evaluate (1) using a computer.  However, when n is large numerical 
evaluation is problematic due to the alternating series of terms that can get quite large and never become 
negligible.  For the heterogeneous case, the computational complexity is a severe problem.  In addition, 
direct evaluation of (1) is not a scalable solution since each term of the series involves a combinatory 
number of terms.   
 
1.2 Related Work 

Applications related to ours have been encountered in several other domains, although often with the 
simplifying assumption of equal ip  values.  Weiss (1962), for example, discusses a context where 
homogeneous redundant elements perform a task at discrete time intervals.  Each element was assumed to 
have a constant probability of success and the expected system life is of interest.  Margolin and Winokur 
(1967) formulate the homogeneous problem in the context of an inverse sampling scheme where iX  
denotes the number of trials required for the i-th entity to succeed and ( )nµ  represents the number of 
stages of sampling required for each entity to finally succeed.     Flajolet and Martin (1985) discuss the 
homogenous problem in the context of the analysis of various database processing algorithms, including 
estimating the cardinality of a set.  Szpankowski and Rego (1990) dealt very thoroughly with the 
homogeneous problem when analyzing the performance of  concurrent programming methods. 
 
It would be natural to try and utilize extreme value theory to approximate the mean of ( )nX .  However, it 
is well known that in the homogenous case a limiting distribution does not exist [see, for example, 
Anderson 1970)].  Clearly the heterogeneous case would not yield to asymptotic theory since the 
parameter space is grows as rapidly as n.  Szpankowski and Rego (1990) used Cauchy’s residue theorem 
from complex variable [see, for example, Henrici (1975)] to approximate the alternating series in (1) and 
arrive at a large n approximation  

( ) log / 0.5n Q n Lµ γ+ +                                                           (2) 

where 1Q q−= , logL Q=  and 0.577...λ =  is the Euler constant.  The approximation in (2) is simple to 
use and n does not have to be that large for it to be accurate over a wide range of p.  Letting 2

( )nσ  denote 

the variance of ( )nX , and using 2
( )nσ  to designate the homogenous case,  Szpankowski and Rego also 

showed for large n 
2 2 2
( ) /(6ln ) 1/12n Qσ π +  .                                                      (3) 

It’s of interest to note that (3) does not depend upon n.  Kirschenhofer and Prodinger (1993) extended the 
approximations of Szpankowski and Rego to cover the d-th order statistic, ( )dX , and Grabner and 

Prodinger (1997) further extended the approximation to cover the case where iX  has a negative binomial 
distribution.   



2. Approximations 

Our proposed approximations for the case of general ip values take the form 
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where k is selected based on prespecified ε -level of accuracy.  We show that the required value of k for 
ε -level of accuracy of the approximation for the mean satisfies  
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n n

n
q q nk Max n q Cε≥ − − −  .   We provide a similar bound for k that 

guarantees ε -level of accuracy of the approximation for the variance.  In each case, the critical value of k 
depends on n and ( )nq .  Table 1 tabulates the critical values of k for alternative combinations of 

( )( , )nn q .   
 

n 
( )nq  

20 50 100 200 
0.1 3, 5 3, 6 3, 6 4, 7 
0.2 4, 7 4, 8 5, 9 5, 10 
0.3 5, 10 5, 11 6, 12 7, 14 
0.4 6, 13 7, 15 8, 17 9, 18 
0.5 8, 18 9, 20 10, 23 11, 25 
0.6 11, 25 12, 29 14, 32 15, 34 
0.7 15, 38 18, 43 20, 47 22, 51 
0.8 25 ,66 29, 74 32, 81 35, 87 
0.9 55, 158 64, 176 71, 189 77, 202 

 
 
3. Application 
 
Returning to the broadcast transmission system design problem introduced in Section 1, we utilize the 
approximation for ( )nµ  to develop an insight for the performance of the system.  Figure 1 shows three 
cases of system throughput curves, computed as ( )1/ nµ .  The value of ( )nµ  was approximated using 

4k = .  In the first case, the ip  are  equally spaced on [0.85 , 0.99] ,  in the second case they are  equally 
spaced on [0.95 , 0.99]  and in the third case they are all equal to 0.99.  In the first case, where some of the 
users have relatively low probabilities of packet reception, the number of simultaneous users the system 
can support and still provide at least 50% throughput is 21.  In the second case, where most users have 
relatively high packet reception probabilities, the system can support up to 40 simultaneous users and still 
provide at least 50% throughput.  In the final case, when all users have a high probability of receiving the 
packet, the system can support up to 337 simultaneous users and still provide at least 50% throughput.    
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